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Transverse deflection

Mass per unit volume

Young's modulus

Cross-sectional area

Moment of inertia of area

Body mass of the vehical
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Gravitational acceleration

Suspension stiffness
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Velocity of the moving load

Damping coefficient of the moving load
Damping coefficient of the beam material
Time
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First derivative of y, with respecttot
First derivative of y, with respecttot
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(kg/m')
(N/m?)
(m?)
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ABSTRACT

Vibration Analysis of a Non-Linear Beam Subjected to a
Moving Load by Using the Galerkin Method
By
Issa Said Ammari
Supervised By
Dr. Mazen AL-Qaisi

In designing the highway bridges to be subjected to moving traffic loads,
it is desirable to avoid excessive dynamic deflections, because of additional safety
considerations, and possible discomfort of pedestrians and vehicle drives. Therefore,
analytical or numerical methods of predicting the dynamicrdeﬂections are needed in
designing bridges; to ensure that these will be acceptable.

This study presents the analysis of dynamic deflections of abeam (with the
bridge modeled as a beam ), including the effects of geometric non-linearity, subjected
to moving vehicle load. The beam is assumed to be ¢lastic and simply supported with
immovable ends, and the vehicle is assumed to be a two degree of freedom, with the
vehicle moving on the beam from one end to another. The dynamic deflections of the
beam and vehicle are computed by using the Galerkin method, by which these
deflections are assumed to be a set of time functions multiplied by assumed approximate
space functions. The time functions are numerically computed by solving the non-linear

differential equations by the Newmark-3 method.
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CHAPTER ONE

INTRODUC TION AND LITERATURE REVIEW

1.1 INTRODUCTION:-

It is awell-known fact that beams represent one of the most important structural
members in engineering design and construction and there is no design in which‘the beam
problems in one form or another do not arise.

In the analysis of large amplitude deflections in beam under lateral loads one
cannot neglect the non-linear effects in the equations of motion. Particularly for relatively
slender beams whose edges are restrained from axial displacement, the deflections
calculated for linear and non-linear beams show large differences and hence the analysis of
deflections of non-linear beam is necessary in practice.

Non-linearities in the behavior of a structure are due primarily to either of the two
causes as proposed by [1]. 1. The most obvious cause is a material having a nonlinear
stress-strain curve; in this case we refer to the structure as having material nonlinearities. 2.
The other possibility is that the nonlinearities are produced by the geometry of the
deflected structure. This situation occurs whenever the deflections of the structure alter the
action of the applied loads or the reactions. In our case it is due to the axial force
generated by stretching the middle surface due to the immovability of the end support.

Three Chapters are devoted for obtaining the non-linear transverse deflection.
Chapter 2 is devoted to the mathematical modeling of the problem and the selection of the
approximation functions that meet the specified boundary conditions . The technique of
obtaining algebric equations in terms of the undetermined parameters are also discused in
Chapter 2. Chapter 3 is devoted to the study of the method of solution as applied to the
final differential equations which is obtained from Chapter 2. Numerical example and the

discussion of the results are presented in Chapter 4.
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1.2 JLLUSTRATION OF THE PRESENT WORK

It is a well-known fact that the moving loads on the beam produce greater dynamic
deflections and greater stress than do the same loads acting statically and because one
cannot neglect the non-linear effects in the equation of motion. Therefore the objectives of
this study are :

1. To find the dynamic deflection of a beam subjected to 2 moving load by using the
Galerkin method, which is a form of the method of weighted residuals (MWR) [2,3],
including the effects of geometric non-linearity.

2. To investigate the effects of damping on the response.

3. To investigate the changes in response due to variations in the vehicle velocity and in

the vehicle load,
1.3 LITERATURE SURVEY

A variety of studies of non-linear beams have been made, for both free and steady
state vibration problem [4-10], by using a finite element approach {4-8] and a continuum
approach [9,10], (Perturbation and Rayleigh-Ritz methods) . These studing indicate that
the deflections which were calculated for linear and non-linear beams show large
differences.

As stated earlier, moving loads on the beam may produce a larger dynamic
deflection and thus a greater stress than do the same loads acting statically, and a number
of investigation of the vibrations of beams subjected to a moving loads have been reported
[11-24]. Even though there are many published reports and studies on this subject, this
survey will cover the recent studies done on this topic.

Bridges are systems which possess an infinite number of degrees of freedom
because the mass and elasticity are continuously distributed. Various investigations of the
dynamic behavior of such continuous systems subjected to a mdving load have been

carried out by [11-18] for deterministic excitation, and by [19-21] for random excitation.
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LIryba [19], investigated the non-Slationary random vibrations of a bcam, The beam was

subjected to a random force with constant mean value moving with constant speed along
the beam.The statistical characteristics of the first and second order for the deflection was
computed by using the correlation method. The numerical results of the coefficient of
variation of the deflection of the beam span mid-point were given for five basic types of
convariances of the force {white noise, constant, exponential cosine, exponential and
cosine wave). The effect of the speed of the movement of the force along the beam as well
as the effect of the beam damping was investigated in detail.

Bridges encountered in practice frequently have appreciable non-uniformity of
cross sectional area and moment of area. J.Hino [22], described the evaluation of the
dynamic deflections and accelerations of a concrete bridge. The bridge was assumed to be
completely elastic and to be subjected to a moving traiffic load. Both the cross sectional
area and the moment of area being non-uniform. The vehicle was assumed to be a single
degree of freedom system, with mass, stiffness and damping. The method of weighted
residuals (MWR) in the Galerkin form was used to formulate the finite element problem,
then Wilson's H  method [25], which is one of the direct integral methods, was used for
integrating the differential terms of the final formulation of the spatial domain. In the
above investigation the effects of longitudinal deflections and inertia were neglected.
However, there exist cases in which the longitudinal deflections and inertia cannot be
neglected. Hino ef al. [23] , presented the non-linear vibration of immovably supported
variable beams, in which the geometric non-linearity due to the axial force generated by
stretching the middle surface was taken into account. When the beam is subjected to a
moving load, the dynamic deflection of the beam were computed by using the Galerkin
finite element formulation, and the time differential terms were integrated by using the

implicit direct integrating method. Non-linear deflections of the beam have been calculated

for the following models. In the first model, the longitudinal deflections and inertia were

considered; model II, the longitudinal deflections were considered,but
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the longitudinal inertia was not considered: 1ie., and then

?
EA[(a%x) + %(a%x) ]:constant : model HI, the longitudinal effects were not
considered. [9,26]: i.e., pA(az%tz) =0 and (a%x) = 0. The results obtained by using

these non-linear models were numerically compared with that obtained by the linear mode!
. In the above investigation the effects of the damping coefficient of the beam material
were neglected from the governing differential equation.

Yoshimaura et al [24] , investigated the dynamic deflection of a beam, including
the effects of geometric non-linearity and the damping coefficient of the beam material,
subjected to moving vehicle loads, where the vehicle was assumed to be a single degree-
of-freedom. The dynamic deflections of the beam and vehicles were computed by using the
Galerkin method. The dynamic deflections were assumed to be aset of time functions
multiplied by approximate functions, respectively, and the time functions were numerically
computed by solving the non-linear differential equations by the Newmark- B method.

This latter method will be discussed later in chapter 3.2.
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CHAPTER TWO
MATHEMATICAL MODELLING

2.1 GENERAL

Virtually every phenomenon in nature, whether biological, geological, or
mechanical, can be described with the aid of the laws of physics, in terms of algebraic,
differential, or integral equations relating various quantities of interest. Determining the
stress distribution in a pressure vessel with oddly shaped holes and numerous stiffeners and
subjected to mechanical, thermal, and/or aerodynamic loads, and finding the concentration
of pollutants in sea water or in the atmosphere, and simulating weather in an attempt to
understand and predict the mechanics of formation of tomadoe.s and thunderstorms are a
few examples of many important practical problems. While derivation of the governing
equations for these problem is not unduly difficult, their solution by exact method of
analysis is a formidable task. In such cases approximate method of analysis provide
alternative means of finding solutions. Among these the variational methods such as the
Ritz and Galerkin methods.

In this Chapter we will begin by presenting and discussing the structure of the
problem , such as the equations of motion which will be presented in section 2.2 , and then
we will present in section 2.3 the procedure to get a set of ordinary differential equations in

time by using the MWR.

2.2 MATHEMATICAL MODELLING.

The system under consideration is shown in Figure 1. The vehicle is modelled as a
two-degrees of freedom and is moving with constant velocity on the beam from one end to

the other. The dynamic deflection of the moving vehicle, which is alv\./ays in
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Figurel. Model of beam and moving load [23].



contact with the beam, is expressed by y, and y, , with the origin ( with O as the origin )

assumed to be the neutral position.

This model differs from other models {which were used by investigators mentioned
in the literature survey ) by the following points:
1. The moving load is modelled as a two degrees of freedom, while most of the
investigators assumed the moving vehicle to be a single degree-of-freedom.
2. In this model the effects of the damping coefficient of the beam material will be
included in the calculations . This factor was neglected by many investigators.
3. The effects of the longitudinal deflections will be considered in the equations of motion.
The above term was neglected by many investigators.

Literature survey showed that the same model was used by Hino et al [23] , with
the exception of point 2 and he solved the problem by the finite element formulation.

When the rotary inertia and the shearing deformations are neglected (because the
beam is assumed to be thin and also these terms are small and they are usually ignored
compared with the transverse deflection.), the governing differential equations (see
Appendix 1 for the derivations) for the non-linear flexural deflections of the beam

(including the geometric non-linearity) [1,23] , are

pA(dw/ot?)+ C(aw/at)+(2*/ax?)(El  9*w/ox?)=

.
(a/ax){EA[(au/ax)+%(aw/ax)2 ] aw/ax} + [(ms +m )g—mi, - muf,"z]ﬁ(x —vt),
where
(m,+m)g : is the static load.
mgy3+myy, :is the dynamic load.

For the axial deflection, we have

pA(9%u/ot?) —(B/BX){EA[(Bu/ax)+%(aw/8x)2 ]} =0, (2).

The vehicle motion is governed by the following equations

m, (d %y, /dt*)+m,(d %y, /dt?) +k (v, - y,) =0, 3).
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ms(dzya/dtz)+c’(dy3/dt "de/dt)+ ks(YJ - Yz) =0, 4).

where

y,=w at x=vt

The boundary conditions for the simply supported beam with immovable ends are

given by :
u=0. at x=0. and x=L
w=0. and EI(9?w/0x’)=0 at x=0.and x=L (5).

and the initial conditions for the beam and for the moving vehicle at t=0.0 are,

respectively,given by:

u=u,(x), dufat=u(x), w=wy(x), ow/or=w(x), (6).
V2=Ys, Ay, fdt=Y,, y,=¥,. dyfdt=7,, (.
Equation (1) can be expressed by different way , this is done by rearranging the
expression in equation (3) as :
m, (d?y,/de*)+m,(d%y, /dt*} = =k, (y, ~ )

By substituting the above equation into equation (1) we will have the following equation:

pA{0*w/dt? )+ C(aw/at) + (32/0x* [E1*w/ax* | =
(8/8x){EA[(8u/8x)+ 1/2(8w/8x)2]8w/8x} +[(m5 +m,)g+k (y,- y,)]ﬁ(x —vt)

Here x is the axial co-ordinate measured from the origin (m} (with O as the

origin), u is the longitudinal displacement (m), w is the transverse deflection (m), p is

the mass per unit volume (kg/m’), E is Young's modulus (N/m’), A is the cross-

sectional area (mz) , 1is moment of inertia of area (m4), m, denotes the body mass of

the vehicle, (kg), m, the mass of the wheels (Kg), g is gravitational acceleration

(m/ sz), k, denotes the tire stiffness and k, the suspension stiffness constants of the

moving load (N/m), C is the damping coefficient of the moving load (Ns/m), Y, denotes

the vertical displacement of the body (m), Yy, is the vertical displacement of the wheels
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1 of the beam at the pointj'ust Uﬂdﬁ[ mC mUYlHE Joad (m)’ v isthe

ef
e 66.“;’ load (m/s) 8() is Dirac's delta function , C is the damping
¥ o
N 9 o& ©° Fn material ,t istime (s), V, and y, arc the first derivative of y,
o
& t m/
((\0\6 ot o t (ms).
co® o Egeneralize the results equations (1)-(4) must be written in non

bk -
" 5 and this is done by using the following dimensionless variables {23]

/css variables are denoted by astreisks).
/J?E)-)t, v =Jlp/Elv, x'=x/L. A=A/,
[Elp. 1 =1L, vy =v,/L. ¥, =¥, /L,
L(r=JI/A), g =Lpg/E, G =m/(m+m,),
(mm)/Up,  E=yfkLp/E(m o),
h=C 20K M+ M), x=K,Pp/(M;+M,),
w=w u=y, U=/

Here r s the radius of gyration of the cross section. By substituting these

N

dimensionless quantities into equations (1)-(4), and dropping the asterisks for brevity,

g:(caszw/atz)+c(aw/at)+(8’/8;{ [ 1(9%w/ax> ]
» (8)
(Blax){ [(au/ax)+—(8w/ax) ]8w/8x}+ m,[g- ¥ —C,¥, J8(x —vt)
442321
A(3 *ufot) - (3/0x)[ A(du/ox)] = %(a/ax)[A(a w/ax)’], | 9).
Cn(dZYz/dtz)“{“(l _‘:n)(dZY3/dt2)+ x*(y, -y,)=0.0, (10).

(1-C,)(d%y,/de*)+ 2hE(dy, /dt - dy, /dt) + E* (3, ~ y,) = 0.0, (1
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10

2.3 _APPLICATION OF THE MWR TO THE SYSTEM

Our objective in this section is to apply the variational method of Weighted
Residuals to the solution of equations (8)-(11). This method ,like other variational
methods such as Ritz method ,Least-squares method, collocation method and Courant
method, seek an approximate solution in the form of a linear combination of suitable
approximation function.These methods differ from each other in the choice of the
approximate functions.The above methods provide simple means of finding approximate
solutions to physical problems . The formative and computational efforts involved are less
compared to most other methods, such as the finite element method (The FEM is the most
flexible teqnic available for handling problem with complicated B.C, but requires fine
model to represses the motion . This places large requirements on the size of the matrices
and consequently large computing time. However since the B.C of this problem is
relatively simple ,one can use the variational method such as the Galerkin method. Which
has the advantage that the motion of the system can be represented by small number of
functions which reduces the size of the working matrices and in addition this problem has
been solved by the FEM).

The procedure of the method of weighted-residual consists of the following
steppes :

1. Considering the operator equation
Aw=F in Q I
where A is an operator ( linear or nonlinear ), often a differential operator , acting on
the unknown dependent variable w,and F is known function of position . The function
w (i.e., solution) is not only required to satisfy the operator equation { 1) ,it is also required
to satisfy the boundary conditions associated with the operator.
2. Assume an approximate solution:

In the MAR the solution w is approximated by expression of the form
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w —¢0+ZC It

i1
the requirements of ¢, C, and ¢, will be noted shortly.
3. Substitution of the approximation (Il) into the operator equation (I} results in a residual
(i.e., an error in the equation )
E=A{w, )-f#0. I

Once the ¢, and ¢, are selected , E is merely a function of the independent

variables and the parameters C; .Inthe MAR the parameters are determined by setting

the integral (over the domain) of a weighted residual of the approximation to zero:

Jwi(xy)E(x.y.C )axdy =0. i=12,......N v

[¢]

where yr; are weight functions.

When the MWR (Method of Weighted residuals) is applied to the derivation of the
solution of the above equations (8)-(11), the solution for w(x,t) and u(xt) are

approximated by the following expressions.

w(x,t)=ao(x)+§ai(x)ei(t), a2)
a(x.t)=¢o(x)+§¢k(x)wk(t), a3,

Where the ai(x)'s and ¢i(x)'s are,respectively,sets of approximating functions

which must satisfy the following conditions:

1- a,(x) and ([)i(x) must satisfy at least the homogeneous form of the essential boundary

conditions of the problem.(It follows that the specification of uvand w in equation (5)
2z

constitutes

constitutes the essential boundary conditions and the specification of El—

X

the natural boundary conditions).
2. Forany N &N, ,the sets { (x)} and {¢k x)} are linearly independent.

3. {ai(x)} and {¢k(x)} are complete.
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The functions o,(x) and ¢o(x) must satisfy all the specified boundary conditions (ct,(x)

and ¢0(X) =0 if all the specified boundary conditions are homogeneous,i.e.,if the value of
un(x),wo(x),ixo(x) and v'vo(x) =0 for the beam and vy, .y, .y, andy, =0 forthe
moving vehicle ) of the problem. The Gi(t)'s and \yi(t)'s are, respectively, a set of time
functions which are to be determined and N, and N, correspond to the numbers of terms

necessary in the approximations. When equations (12) and (13) are substituted into
equations (6),{8) and (9), the residuals ( which are defined as the difference between the

approximate and exact solutions ,i.e., an error in the equations) are , respectively, given by
= A(8*w/ar?)+ Caw/at)+ (2*/ox* 197w /ox* ) -
(alax){A[(aﬁjax)+%(8Cv/ax)zi|(aw/ax } [g —(1-¢ —g,,'yz]a(x —vt)  (14)
= A(9%/3t?) - ( a/ax)[ {(au/ax)+ (ow/ox)’ H (15).

\T'&ro(x)—wo(x), (16).
o(x) —1,(x), a7.

€ =\'if0(x)—w0(x), €

[=1D

€)= ﬁo(")"‘ uu(x)’ €, =

The residuals (14) and (16) are distributed over the domain by using weighting
functions ( which in general,are not the same as the approximation function ai(x))

Y j( )'s , and are set to zero such that

jel'y }dx =0.0, i=123N (18).
L

jenY x)dx = 0.0, [eny,(x)dx=0.0, (19).
g

Similarly, for the residuals (15) and (17), weighting functions A,(x)'s are used

such as

L _
fer,(x)ax=0.0 §=1,2, oo N,, (20).

4]

1
Ien x)dx=0.0  [er(x)dx=0.0 : 21).
0
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(m), vy, is the dcﬂectilon of the beam at the point just under the moving load (m), v is the
velocity of the nioving load (m/s), &) is Dirac's delta function , C is the damping
coefficient of the beam material , t istime(s), ¥, and y, are the first derivative of vy,
and y, with respect to t (m/s).

In order to generalize the results equations (1)-(4) must be written in non
dimensional forms and this is done by using the following dimensionless variables [23]

(The dimensionless variables are denoted by astreisks).

¢ =(L)J(Ep), v =Jlp/E)v. x =x/L, A'=A/L?,
C'=C/* JEfp, TI'=IL, v, =v,/L, v, =v,/L,
r' =/L,(r=M), g =Lpg/E, ¢, =m,/(m +m,),
m'=(m,+m)/Cp, &=k I’p/E(m,+m,),

r=C /2K (Mg +M,), =K, Up/(M,+M,),

w°=%, u':“L, L'=%,

Here r is the radius of gyration of the cross section. By substituting these

dimensionless quantities into equations (1)-(4), and dropping the asterisks for brevity,

gives

A(9*w/ar?)+ C(aw/an) +(9*/ax? )[1(@*w/ox*}] =

@ron){ A|(ouran) s owpoe? Jowpos} +m a-(1-2. 09,6, s
442321

A(820/ac?) - (3/ax)[ ABu/ax)] = %(B/Bx)[A(a wf3x)’], ©).

¢, (d%y, /de?)+ (1=, Ny, /dt?) + K2 (y, —y,) = 0.0, (10).

(1-¢,)d%y,/dt?)+2rE(dy, /dt - dy, /dt) +E*(y, ~ y,) = 0.0, (1)
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10

2.3 _APPLICATION OF THE MWR TO . THE SYSTEM

Our objective in this section is to apply the variational method of Weighted

Residuals to the solution of equations (8)-(11). This method ,like other variational
methods such as Ritz method ,Least-squares method, collocation method and Courant
method, seek an approximate solution in the form of a linear combination of suitable
approximation function.These methods differ from each other in the choice of the
appr_oximate functions.The above methods provide simple means of finding approximate
solutions to physical problems . The formative and computational efforts involved are less
compared to most other methods, such as the finite element method (The FEM is the most
flexible tegnic available for handling problem with complicated B.C, but requires fine
mode! to represses the motion . This places large requirements on the size of the matrices
and consequently large computing time. However since the B.C of this problem is
relatively simple ,one can use the variational method such as the Galerkin method. Which
has the advantage that the motion of the system can be represented by small number of
functions which reduces the size of the working matrices and in addition this problem has
been solved by the FEM).
The procedure of the method of weighted-residual consists of the following
steppes :
1. Considering the operator equation
Aw=F in Q 1

where A is an operator ( linear or nonlinear ), often a differential operator , acting on
the unknown dependent variable w,and F is known function of position . The function
w (i.e., solution) is not only required to satisfy the operator equation ( I} ,it is also required
to satisfy the boundary conditions associated with the operator.
2. Assume an approximate solution:

In the MAR the solution w is approximated by expression of the form
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N
w, =¢D+EC,¢, It

the requirements of ¢, C; and ¢, will be noted shortly.

J

3. Substitution of the approximation (II) into the operator equation (I) results in a residual

{i.e., an error in the equation )
E=A(w, )-f=0. 111
Once the ¢, and ¢, are selected , E is merely a function of the independent

variables and the parameters C, .Inthe MAR the parameters are determined by setting

the integral (over the domain) of a weighted residual of the approximation to zero:

jwi(x,y)E(x,y,Cj)dxdyz(). i=1,2,....... N v

Q

where W; are weight functions.

When the MWR (Method of Weighted residuals) is applied to the derivation of the
solution of the above equations (8)-(11), the solution for w(x,t) and u(x,) are

approximated by the following expressions.

w(x,t)=a0(x)+§=jai(x)ei(t), (12),

i(x,t) = 9, x)+2¢k x)y, (1), (13),

Where the a,(x)'s and (bi(x)‘s are,respectively,sets of approximating functions

which must satisfy the following conditions:

1- ai(x) and ¢.(x) must satisfy at least the homogeneous form of the essential boundary

conditions of the problem.(It follows that the specification of uand w in equation (3)
2

constitutes the essential boundary conditions and the specification of El ! constitutes
X

the natural boundary conditions).
2. Forany N,&N,, the sets {ai(x)}:: and {q)k(x)}:tl are linearly independent.

3. {ai(x)} and {q)k(x)} are complete.
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The functions ao(x) and ¢0(X) must satisfy all the specified boundary conditions (au(x)
and cbo(x) =(if all the specified boundary conditions are homogeneous,i.e.,if the value of
uo(x),wo(x),ﬁo(x) and Wo(x) = 0 for the beam and vy, .y, .y, andy, =0forthe
moving vehicle ) of the problem. The B.[(t)'s and qli(t)'s are, respectively, a set of time
functions which are to be determined and N, and N, correspond to the numbers of terms
necessary in the approximations. When equations (12) and (13) are substituted into
equations (6),(8) and (9), the residuals ( which are defined as the difference between the

approximate and exact solutions ,i.e., an error in the equations) are , respectively, given by

e, = A(9*®/at*)+ C(9w/ar) + (02/ox* 1(8*w/0x?))-
(a/ax){A[(aﬁ/ax)+§(awax)’](awax)}—mv[g—(l—cn)ya—c;yz]s(x—vt) (14)

e, =A(azﬁ/at’)-(a/ax)[A{(aﬁ/ax)+%(aﬁ//ax)z}], (s
E = ﬁ"o(x)"wo(x)’ Eyy :‘%o(x)_wo(x)v (16).
€y =ﬁ0(x)—uo(x), €22 =ﬁo(x)"ﬁo(x)’ (.

The residuals (14) and (16) are distributed over the domain by using wetghting
functions ( which in general,are not the same as the approximation function o,(x))

'yj(x)'s , and are set to zero such that

L

fery(x)ax=0.0, i=123, N (18).
: L

[eu,(x)ax=0.0, [env,(x)ax=0.0, (19).
0 0

Similarly, for the residuals (15) and (17), weighting functions ls(x)'s are used

such as

. |
[e,(x)dx=0.0 N T N,, (20).
0

L t
Jears(x)dx=0.0  [eyh(x)dx=0.0 : 21).
1 0
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By using equations (18) and (20), the unknown time functions, the Gl(t)'s and v, (t)’s
are , respectively, determined, depending upon the selected functions, Yj(x),s and
A,(x),s. The Galerkin method selection ,which is the most widely used, is to choose

'yj(x)'s and A (x)'s as

¥;(x)=a,(x), =12, N, (22).
Ao (x)=9,(x), S=1,2 N, (23).
Obviously, the weight functions {r} and {y} must be linearly iﬁdepcndet

sets.(otherwise the equations provided by equations (18)-(21} will not be linearly
independent and hence are not solvable.) Substituting equations (12) and (13) into

equations (14) and (15) gives,

e, = §_; Act,(x)8,(6)+ ECa,(x)éi(t) +i82/ax’[ldi(x)9i(t)]—

2;[ [Zm v )+ [):a ” (x)ei(t)}—mv[g—cn%-cnvz]S(wt)

(24).

ez=gmk(x)wk(t)—k{;(a/ax)[Aék(x) J(B]-= a/ax{ [Za (x)e,(t ]}

(25).

Substituting equations (24) and (25) into equation (18) and (20) gives
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L | L
NX{IA(I (x) u.j(x)de (t)} %:li x)aj (x)axé,(t ]+NZ,[J al/ax Iai(x)oc,(x Ydx0, (t)}]

i=1 i=f

[J a/ax[ { > )wkm%[;‘lai(x)ei(t)]z}a.(x)}aj(x)dxei(t)]=
|

fm, [~ (1-2,)5, €, (5 Blx— v (e}, 9)

N,

Z‘:_[Aq)k(x ¢, (x)dxiy, ( t)] Z[j: 3/9x)(Ad, (x)o,(x)dxy, (¢ ))]

k=1

s=1,24 e nl, 27

Performing the integral operations (26) and (27), with account being taken of the

boundary conditions, the following vector - matrix form will be obtained.
[MT}{8} +[cT){o}+[KT]{0} = {F}, 28)
[IMAX¥}+{KA{ v} ={PF}, 29)

Where [MA] is the axial mass matrix, [KA] is the axial stiffness matrix, {PF} is the
axjal force vector which is generated by the transverse deflections, [MT] is the transverse
‘mass matrix, [KT] is the stiffness matrix and {F} is the load vector generated by the

moving load. The elements of their vectors and matrices are respectively given by:

[MA]= i[% (x)Ad,(x)Hx, ks=12 s N,
(KT [[6c A8 ),
{pr}=- J [6x (x)A{0} e (x)o, (x Mo} x,
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i
[MT]= [ o, (x)Act; (x)dx, = 1,2 N,

[KT]={KL]+[KG]

[KL]= j.('il(x)ldj(x)dx,

(kG =OI[ai(x){A[aj(x){w}+g{e}Tai(x)a,.(x){e}]}aj(x)]dx,
[CT]=a[MT]+b[KT}, a,b are constants

(7= [{m[5-01-2,)9, =€, (5:)Jo(x = vt (x)ox,

where [KL] is the linear stiffness matrix , superscript T denotes matrix
transposition, [KG] is the geometric stiffness matrix. Substituting equation (12) into

equation (10) gives the equation of motion for the moving load as :

C,,V(t)+(1—cn)?,(t)+hzy,(t)—i’[ﬁai(vt)ei(t)]=0.0, at x="Wt, (30)

By combining equations (11), (28) and (30),we will have the following coupled
equation ( The word "coupled” is used to imply that the same dependent variables appear
in more than one equation of the set, and therefore no equation can be solved independent

of the other in the set) :

[MT] mpge(vt) m,(1-5,)o,(v)}(8,] [lcT] o o {6
0 L, (1-¢,) J.04 0 0 0 Ky,
0 0 (1-¢,) ¥y 0 -2nf 2|3,

[KT] 0 0 |fs m,go, (vt)
+ -Ala,(vt) ¥ 0 [y, = 0 3n
0 =g -2y, | 0

which is in the standard form of the equation of motion of dynamical systems

M5+ Cx + Kx = f(t), (32)
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The initial conditions 6(0),8(0),y(0) and y(0) , are respectively , determined by

substituting the approximate solutions (12) and (13) into residual equations (16) and (17),
and then the obtained residuals are substituted into the integral equations (19) and (21).

Which leads to the following ,equations

—i(ai (x)e,(0)- wo(x))}ﬂj(x)dx =0.0, i= 12Ny,

& Sy —

& ey —

i‘#x(x)uﬂ(o)_“o(x)},(x)dx=0.0, s=1,2,3,.cc0nneee .N,,

k=1

O Ty, e

300,050 w00

O T
{

Then

o{0)=p'd,  6(0)=P"q, v(0)=27'b,  y(0)=Z7'D,
Where d and b are column vectors, Pand Z are N, *N; & N,*N, matrices,

respectively, their elements are :
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CHAPTER THREE

METHOD OF SOLUTION

3.1 LINEARIZING APPROXIMATION

It is generally suitable for multi-dimensional systems of non-linear equations to
be linearized by incremental displacement [27]. Equation (31), at time ( t+dt)

is expressed as :

[M]{E-R}nm +[C]{9-{}t+m N {R({m}um )} _ {F}Hm ’ 33)
Where {R}= {B,yz,y3}T. and [R) is a vector of restoring forces that depends

upon the displacement field. If the vector (R} is differentiable in the neighbourhood of

all deformed shapes {R}, then the expansion

[r{myee )} ={R (151 )} + GIRY/ATN L g {87)
+ 2 (G {RYDRY) oy (AT

is obtained where {A‘R} ={x} * —{R} s the incremental displacement.

(34).

Substituting equation (34) into equation (33) , and by defining the tangent stiffness

matrix as :

t
[K] =o{R}/3{AH gy iy (35)
and neglecting the higher-order terms beyond the secound derivatives, gives the

linearized equation.

] R kT Tas) = (R - {R (o)) (36)
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3.2 NEWMARK METHOD

In time-dependent (unsteady) problems, the undetermined parameters 9,(t) and
\uk(t) in equations (12) and (13) are assumed to be function of time, while ai(x) and
9, (x) are assumed to depend on spatial coordinates. This leads to two stages of solution,
both of which employ approximate methods. In the solution of time-dependent problems,
the spatial approximation is considered first and the time (or time like) approximation next.
Such a procedure is commonly known as semidiscrete approximation (in space).
Semidiscrete variational approximation in space results inaset of ordinary differential
equations in time, which must be further approximated to obtain a set of algebric equations.
The spatial approximation of time dependent problems leads to matrix differential
equations (in time ) of the form as equations (28),(29) and (36) (Linearized equation).

In structural dynamics problems the equations of motion involve the second-order
time derivatives of the dependent variables .The semidiscrete (spatial) approximation of the
equations results in matrix differential equation of the form of equation (32). There are
several approximation schemes available for time derivative. The most commonly used one
is the Newmark direct integration method . In the Newmark method the first time

derivative {‘:'R} and the function (of time ) {91} itself are approximated at (t+dt)th time step

by the following expressions :

(5" = {8 4 -od{st + o) a7
(st} = (o) + {on acs [ (172 BN B3 Ja, a8).

where o and B are parameters that control the accuracy and stability of the scheme. The

choice o=1/2 and B=1/4 isknown to give an unconditionally stable scheme,which

corresponds to the constant-average-acceleration method.
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TRIAIL
By writing equation (38) for {93} in terms of {93}
R LR

v J1HAL
{‘.R}t into equation (37) to obtain equations for {93}

(+AL o
, then substituting

t+dt
and {91} , each in terms

of {9?}"'M only. Finally, substituting the expressions thus obtained into equation (36) and

collecting coefficients of {A‘iﬁ} and known quantities on the right-hand side of the

equality sign, we will obtain:

[RJ{ax}={#}"", (39).

where
[R]=[K]+Aq[M]+A,[C].

(" = ey st mnfe) o afon) ot mdoi} + af8) |- R
where
A, =1BAY, A =ofB(ar), A, =1B(AY),  A,=1/(2B)-1
Ac=(e/P)-1  A,=ao/B-2)/2,
Once the solution {A?R} is known at (t+dt) the first and second derivatives ( velocity and

acceleration) of {9'{} at (t+dt) can be computed from the following equations :

{E-R}HM = Ao({m}tw _{g{}‘)_AZ{E)'{}_AB{S'K}, (40)
{g’{}H’At - {9‘}1 " Ag{g"}t + Aln{g:{}l+Al ’ (41)
where

A, =(1-a)at, A, = o(At),

Equations (40) and (41) are obtained from rearranging the expressions in equations

(37) and (38). For a given set of initial conditions {9(}0,{9'1}0 and {ER}O we can solve
equation (39) repeatedly , marching forward in time , for the column vector {‘Ji} and its
time derivatives at any time t} 0.

It must be pointed out that one can expect better results if smaller time steps are
used. In practice , however , one wishes to take as large a time step as possible to cut down

the computational expense. Larger time steps,in addition to decreasing the accuracy of the
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solution, can introduce some unwanted ,numerically induced oscillations into the solution.

Thus an estimate of an upper bound on the time step proves to be very useful.

A couple of comments are stated on the selection of the time step and the computation ol
the initial conditions . Although the Newmark method is unconditionally stable (i.e., the
solution is stable for any value of dt ; however, it may be inaccurate), it is helpful to have
a means to determine the value of dt for which the solution is also accurate. The following

formula gives an estimate for the time increment :

At:k“—
n

where T,  smallest period of natural vibration associated with the approximate problem.

An estimate for At can also be obtained from condition that the smallest eigenvalue of the

eigenvalue problem

(A, [M]-AMRIW}=0.0
is less than 1.
where A is minimum eigenvalue and it is equal to
0<i<1 stable without oscillations
-1<A <0 stable with oscillations

A<t unstable

3.3 _TRANSITIONAL ANALYSIS

The transitional responses of the derived system are calculated by using the
Newmark method . Before the incremental solution is cartied out, the linear constant
structure matrices (i.e., the linearized effective stiffness, linear stiffness, mass and
damping matrices ) and the load vectors are assembled . During the step-by-step solution,
the linearized effective stiffness matrix is updated for the non-linearit.y in the system.

The incremental equilibrium equations at time t+dt are
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The incremental equilibrium equations at lime t4dt arc

)&} e} +[x] () =} (R}, “2)
[MAJ{)"* +[KAHdy} = {PE}"™ ~[KAJ{w], 43)

To improve the solution accuracy of the non-linear equation (42), it is necessary

to carry out the equilibrium iteration in each time step. The equilibrium equation is

obtained as

[M]{ﬁ't}:”“ +[c]{9't}:”' K] (o), = (R - {RES, =123 @4)

where

g} o] e foh = (B + (),

are vectors of the accelerations, velocities and deflections at the time i interation,

respectively. The iterative compution is continued untill

<tol.

[EaAT i

is satisfied where fol. denotes the tolerances and ||ﬂ denotes the Euclidean norm. The

transitions of the accelerations, velocities and deflections from t to t+dt are given in
Appendix II. Once the transverse deflection , {93}“"[ , is known at time t+dt .

{PF}Hdl can be calculated. As {PF}Hdt is regarded as the axial force vector which is

generated by transverse deflections, the longitudinal deflections, velocities and

accelerations, which correspond to {\p}”d[,{\i!}“dt and{l}}r}”dl respectively, at time

t+dt are obtained.
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CHAPTER FOUR
NUMERICAL EXAMPLE AND DISCSSION

The classical variational methods(i.e.,Ritz, Galerkin , Least-squares, etc.)
provide simple means of finding approximate solutions to physical problems. The
formulative and computational efforts involved are less compared to most other
methods ,such as the finite-difference and the finite-element methods. Furthermore,the
approximate solutions obtained are continuous functions of position in the domain. The
main disadvantage, from the practical point of view, of the variational methods that
prevented them from being cometitive with other methods is the difficulty encountered
in selecting the approximation functions. A part from the properties the functions are
required to satisfy ,there exists no systematic procedure of constructing them. The
selection process becomes more difficult when the domain is geometrically complex
and/or the boundary conditions are complicated. If the functions are not selected from
the domain space of the operator of the equation being solved, the resulting solution
could be either zero or wrong. One cannot automtize the procedure for a given equation

because the choice of approximation functions differs with the boundary condittons.

4.1 NUMERICAL EXAMPLE

For use in the numerical calculations, the approximating shape functions used in

equations (12) and (13) are ,respectively, given by [12,16,24]

o,(x) =sin(inx/1),), i=12,...N, (45a),
o, (x)=sin(knx/1), K=12,....,N, (45b),

The initial conditions for the transverse and longitudinal deflections for the

beam and for the vertical deflections of the moving load are assumed to be :

Wn(x)=W0(x)=O.O u, (x)= t'l.,(x)=0.0,
Y2, = yzn =0.0 ¥, = 930 =0.0 (46)
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The dimensionless vatiables to be used for the bean and for the moving load arc

taken as {23].
g=.49*10" £ =..005 x=5
g, =02 h=25J1-C,

and the values of o and [, which are parameters of the Newmark method, are

determined as .5 and .25 , respectively, by considering numerical accuracy and

stability.

The geometry of the simply supported beam which is used is shown in Figure 2.

where the cross-sectional area, A(x) , and the moment of inertia , I(x), are assumed to be

[9,23,26} :

A(x) = A, (B x5 +1),
1(x) =1, (-B/|x—3+1), (a7)

Where f, is constant {0<B, < ),and A, and I, are positive constants. The

values of A,land r= 1fI/A (radius of gyration)are denoted by A_,I, and r, at mid-

span . The load parameter ¢, [23] is defined by

m,.g
= b A8
4 481, “8)

which relates to the linear static deflection

Numerical convergence experiments were performed with various time steps, dt

 When the time step was taken to be less than 2.0, the numerical accuracy of the

deflections , velocities and accelerations improved only slightly , but the

computational load was considerably increased . Therefore, in the subsequent

calculations, the value of dt was set to 2.0 and the number of terms used in the

approximations of the solutions N, and N, was setto three .
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Figure 2. Geometry of beam [9,23,28].



[A

4.2 DISCSSION

Approximate solutions for equations (28) and (29) were determined by using
Newmark method. The transient responses at mid-span for the simply supported beam
are shown in Figures 3(1)-(14), where deflection ratio is plotted against position ratio .
In Figures 3(1-7) the non-linear responses is compared with the linear responses (the
linear response values were obtained by neglecting the first term on the right-hand of
equation (1)). It is seen from these Figures that the amplitudes of the non-linear
deflections are somewhat smaller than these for the linear deflections, and this is due to
the fact that the inplane forces increase the bending stiffness of the beam and therefore
it reduces the bending deflections. After the vehicle finish the transit of the beam,
where the transit times equal to v/L, the beams goes into damped vibration.

Figures 3(1-3) shows the transverse deflection for non-uniform beam ( B, =1.0),
radius of gyration at mid-span , r, ,i8.01, v= .002,C=0.0,and q,=.005,.0055 and
006, respectively. To easy the comparison, Figure 3(4) showé the difference between
the non-linear deflections as the load parameter, g, is increased . It is seen from this
Figure (3(4)) that the amplitude of the deflections becomes larger if the load parameter
is larger . This has been observed by many investigators such as Hino et al (22-24]. In
Figures 3(5-7) , the transverse deflections at mid-span are shown , the velocities being
given by .002 , .003 and .004, respectively , B, =00, r,=01, C=0.0 and the load
parameter by .005. To easy the comparison, Figure 3(8) shows the relations between the
non-linear transverse deflection and T (Time) for different velocities. It is seen from
this Figure that the amplitude becomes larger if the moving load velocity is faster . This

has been observed by Hino efal [22] and Hino et al {23] . Figure 3(9) shows the non-
linear deflections for uniform (B, =0.0) and non-uniform beams (B,=1.0). It is seen
from this Figure that when uniform beams are considered , the effects of longitudinal
deflections and inertia are to reduce the non-linearity . This has been observed by Raju

etal [9],Mei [29] and Hino et al [23}.
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{- The transient responses at mid-span for the simply supported beam which is shown

in Figure 3(10) was constructed for the sake of comparison with previouslly
published results (which was obtained by using different method [23)). It was found
out that the obtained results by using the Galerkin method are almost consistent with
results of [23]. As stated earlier the changes in response due to variations in the
damping coefficient of the beam material will be investigated , Figures 3(11-12)
were constructed for showing the above . To easy the comparison, Figure 3(13)-(14)
shows the non-linear deflection behaviour for different values of C (damping
coefficient of the beam material ). It is seen from this Figure that by increasing the
value of C the free damped vibration, which is obtained after the vehicle cross the

beam , is reduced more than the forced damping.
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CONCLUSION

In this paper , the dynamic deflection of a beam and moving vehicle have beén
analysed by using the variational method.The formulation in the spatial domain has
been carried out by using the Galerkin form of the method of weighted residuals
(MWR). The non-linear equations derived were then linearized by using the incremental
method ,and the transient responses computed by the Newmark method . The vehicle
making up the moving load on the beam have been assumed to be a two-degree of
freedom. The responses at mid-span for the non-linear model have the smallest
amplitude, as compared with responses for the linear model. Only a few terms of the
Galerkin series solution were needed for convergence in the calculations. Thus the
MWR is a useful practical method of calculation for this problem (if the correct

approximation function is used).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



42

References

I. Nayfeh,A.H. And Mook,D.T. : Non-Linear Oscillations. , John Wiley , New
York, 1979.

2. Finlayson,B.A.: The Method Qf Weighted Residuals And Variational Principles
, Academic Press, New York.

3. Polis,M.P., Goodson,R.E. And Wonzy,M.J.: "On Parameter Idenitification For
Distributed Systems Using Galerkin's Criterion,” Automatica, Vol.9, 1973, Pp53 - 64.
4, Mei,C.: "Non-Linear Vibration Of Beams By Matrix Displacement Method,”
. American Institute Of Aeronautics_And Astronautics Journal ,Vol.10, 1972, Pp355 -
357.

3. Prathap,G.: "Comments On Non-Linear Vibration Of Immovably Supported
Beam By Finite-Element Method," American Institue Of Aeronautics And Astronautics,
Journal , Vol.18, 1980, Pp733 - 734.

6. Bhashyam,G.R. And Prathap,G.: "Galerkin Finite Element Method For Non-
Linear Beam Vibration," Iournal Of Sound And Vibration, Vol.72, 1980, Pp191 - 203.
7. Sarma,B.S. And VaradanT.K.: "Largrange-Type Formulation For Finite
Element Analysis Of Non-Linear Beam Vibration,: Journal Of Sound And Vibration,
Vol.86, 1983, Pp 61 - 70.

8. Evensen,D.A.: "Non-Linear Vibration Of Beams With Various Boundary
Conditions,” American Institute Of Acronautics And Astronautics Journal Vol.6, 1968 ,
Pp370 - 372.

0. "Raju,1.S. And Rao,G.V.:" Effect Of Longitudinal Or Inplane Deformation And
Inertia Of The Large Amplitude Flexura Vibration Of Slender Beams And Thin Plates,”

Journal Of Sound And Vibration Vol. 49, 1976, Pp415 - 422.
10.  Reddy,J.N. And Singh,LR.: "Large Deflections And Large-Amplitude Free

Vibrations Of -Straight And Curved Beams,” International Journal Of Numerical
Methods In Engineering , Vol. 17, 1981, Pp829 - 852. '

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



11, Kcnny,J,T.; " Steady- State Vibrations Of Beam On Elastic Foundation For

Moving Load ", American _Society_Of Mechanical Engineers Journal Of Applied
Mechanics , Vol. 21, 1985, Pp359 - 364.

12.  Norris,C.H., Hansen,R.J. And Holly,M.J.: Structural Design For Dynamic
Loads, , Mcgraw-Hill Book Company, New-York ,1959.

13. Weitsman,Y.: " Onset Of Separation Between A Beam And Tensionless Elastic
Foundation Under Moving Load," International Journal Of Mechanical Sciences
Vol.13, 1971, Pp707 - 711.

14. FrybaL.: " Vibration Of Solids And Structure Under Moving Loads,”
Groningen Noordhoff International Publising.

Vol.10, 1972, Pp252 - 260.

15. Rao,K.: " Onset Of Separation Between A Beam And Tensionless Foundation
Due To Moving Loads," American Society Of Mechanical Engineers Journal Of
Applied Mechanics Vol.41, 1974, Pp303 - 305.

16.  Timoshenko,S.: Yibration Problems_In Engineering , John Wiley And Sons,
New-York, 1974.

17.  Adams,G.G. And Bogy,D.B.: " Steady Solution For Moving Loads On Elastic
Beams With One Sided Constraints,” American Socicty Of Mechanical Engineers
Journal Of Applied Mechanics Vol. 42, 1975, Pp800 - 804.

18. Chorus,J. And Adams,G.G.: " A Steady Moving Load On An Elastic Beam
Resting On A Tensionless Winker Foundation,” American_Society. Of Mechanical
Engineers Journal Of Applied Mechanics , Vol. 46, 1979, Pp175 - 180.

19. " FrybaL.: " Non- Stationary Response Of A Beam To Moving Random Force,"
Journal Of Sound And Vibration  ,Vol. 46. 1976, Pp323 - 338.

20. Kurihara,M. And Shirhogo,T.: " Stability Of A Simply-Supported Beam
Subjected To Randomly Spaced Moving Loads,” American_Society Of Mechanical

Engineers Journal Of Mechanical Design_, Vol.100, 1978, Pp 507 - 513.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



W

21. Kurihara,M. And Shimogo,T.: " Vibration Of An Elastic Beam Subjected To

Discrete Moving Loads ," American Society Of Mechanical Engineers Journal Of

Mechanical Design , Vol. 100, 1978, Pp514 - 519.
22. Hino,J. , Yoshimura,T. And Konishi,K.: " A Finite Element Method Prediction

Of The Vibration Of A Bridge Subjected To A Moving Vehicle Load," Joumnal Of
Sound And Vibration , Vol. 96, 1984, Pp45 - 53.

23.  Hino,J. , Yoshimura,T. And Anathanarayana,N .: " Vibration Analysis Of Non-
Linear Beams Subjected To A Moving Load Using The Finite Element Method,"

Iournal Of Sound And Vibration, Vol. 100, 1985, Pp477 - 491.

24, Hino,).,Yoshimura,T. And Anthanrayana,N .: " Vibration Analysis Of Non-
Linear Beam Subjected To Moving Loads By Using The Galerkin Method,:" Jourmal Of
Sound And Vibration , Vol. 85, 1986, Pp179 - 186.

25.  Thomson,W.T.: Mibjalion__TheQ:}f_Mﬂl_AppliQa&Qnand..Edition, Prentice-
Hall,Englewood Cliffs, New Jersey, 1981.

26.  Bathe,K.J And Wilson,EL: Numerical Method In_Finite Element Analysis,
Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

217. Nickell,RE.: " Non-Linear Dynmics By Mode Superposition,” Computer
Method In Applied Mechanics And Engineering , Vol. 7, 1976, Pp107 - 129.

28.  RajuK.K. And Shastry,B.P.: " A Finite Element Formulation For The Large
Amplitude Vibrations Of Tapered Beams, " Journal Of Sound And Vibration , Vol. 47,
1976, Pp 595 - 598..

29.  Mei,C.: " Comments On The Largrange - Type Fofmulation For Finite Element
Analysis Of Non-Linear Beam Vibration,” Journal Of Sound And Vibration , Vol. 94,
1984, Pp 445-447 .

30.  Baathe K.J. . Ramm,E. And Wilson,EL.: " Finite Element Formulations For

Large Dynamic Analysis,” International Journal For Numerical Methods In
Engineering , Vol. 9, 1975, Pp 353 - 386 .

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



40

APPENDIX I
EQUATION OF MOTION

In this Appendix, the govering differential equations of a beam and the moving
vehical are derived by suitable manipulation of the differetial equations and boundary
conditions arising from a variation of the total potential.

1. For the beam motion :

The non-linear strain displacement relations of a beam are(see reference [6])

%(aw/ax)2 +dufox Al

Wy =0 wfox? A2

£, =

where €_ is the axial strain, ¥, is the curvature, and u and w are the axial
and transverse displacements, respectively. Using Hooke's law we can write the

following relation for the elastic strain energy U:

L
U='[ —I-EAEZx+lEIW2;+SE X
2 2 .

{EA[BU 8x+-;— / }}
{EA/ 2[au/ax+ 1/2(3w/8x)2]+131/ 2(3?w/ox?)’ +s[au ax +%(aw/ax)2 :l}dx

A3

:
:

Here E,A,L,S and L are Young's modulus, the arca of the cross-section , the moment of

inertia of the cross-section, the initial axial force, and the length of the

beam,respectively.

The kinetic energy of the beam is given by :

T= —:?I[(au/at)z + (aw/at)z]dx A4
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where m is the mass per unit length and it is equal to pA. Where p is mass per unit

volume (Kg/m3) .

The work done on the beam is given by :
W=Fxw A5
where F is a force which is generated by the load which is acting on the beam.
Applying Hamilton's principle to the Lagrangian L=T-U+W of the system,
namely:

ST Ldt=0 A6

one can extract the following differential equations. In the w direction,

Ea*w/ax* ~39*w/axt ~(9/ax)|EA[au/ax + 1f2(aw/ax) J(ow/ax)}
+pA 9°w/ot* —F(x,t)+Cow/at =0.

A7

In the u direction,

pAd*ufot® —(9/0x) {EA[au/ ox+1/ 2(aw/ax)’]} =0. A8

where Cow/dt is aequivalent viscous term added to the equation to account for the
damping forces . F(x,t) is equivalent to the static and dynamic loads which are produced

by the moving vehicle and it is equal to :

[(ms + rnu )g - ms.);:i - mu yl]s(x - Vt) Ag

Thus, the beam motion is governed by the differential equations A7 and AS.

2. For the vehicle motion :

By considering the body mass (M, } of the car, the following forces will act on it

1. The attraction force of gravity.

F =mxg Al0

where g is the acceleration of gravity .
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2. The spring force (k,) exerted by the spring when the spring is stretched ., This force is

proportional to the stretch
F=k*s Hooke's law
where
s : is the stretch

k : is the spring modulus
When the body is at rest we describe its position as the static equilibrium
position. Clearly in this position the spring is stretched by an amount s, such that the
resultant of the corresponding spring force and the gravitationat force AlOQ is zero,
that is
k*s, =m*g All
Let y=y(t) denote the displacement of the body from the static equilibrium position .

From Hooke's law it follows that the spring force corresponding to a dislpacement y is

F, =—k*s,—k*y Al2
3 If we connect the mass to a dashpot, then we have to take the corresponding viscous
damping into account. The corresponding damping force has the direction opposite to
the instantoneous motion , and it is proportional to the velocity y= dy/dt of the body .
Thus the damping force is of the form :
E,=—C,*¥ Al3
The resultant of the forces acting on the body (Ms) is equal to :
F+E +F =mg—k*s, —k,y-Cy Al4
and because of equation All, equation Al4 becomes
F+F+F=-ky-Cy AlS
Hence, by Newton's second law

My=-ky-Cy Al6

When the system in motion , the net change in spring length y equalto (y3 —yz).

Equation A16 becomes as

M.y, +k, (v, = ¥,)+C,(3, -9, =0. Al7
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By considering the forces which is acting on the mass of the wheel [M) we will

have,
M.J, +k,(y, = ¥2)+ G (3, ~ 3+ K, (v, =) = 0. AlS

where vy, is the transverse deflection of the beam at the point just under the movung

load. Rearranging equation (A17) , we have

M,¥; =k, (y, = )+ C.(32~ ) Al19
Substituting equation (A19) into equation (A18) we will have

M, ¥, +M§, +k, (v, —y,)=0. A20

Thus , the vehicle motion is governed by equations (A17) and (A20).
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Initial calculations proceed as follows.
L. form the linear stiffness matrix [K] , the mass matrix [M] and the damping

matrix [C].Calculate the following constants (for tol.

<.001, 02,5, 2.25(.5+a))
A, =1/B(dt)", A, =o/B(dt), A, =1/p(dt),
A, =128)-1,  A,={o/B)-1, A, =dtf(e/B)-2]/2.,
A, = dt(l.—at), A,, = odt,
L Initalize {9t} {5t} and {1}
II.  From the effective linear stiffness matrix
[K]=[K]+A,[M]+A,[C]
where  [K]=[KL] +[KG]
The step-by-step integration the proceeds as follows.
L The updated stiffness matrix [KG] for non-linear effects is to be formed.

1I. Form the effective load vector

[} = ey +[M](A2{<Ji}' +A3{~§i}‘)Jr[c](,axd,{sit}l + A,{‘fi}t) ~{r}.

III.  Solve for the displacement increments.

[R]fast} = {£}"*,

1IV.  Iterate for equilibruim if required.
{aR} ={dR}, i=0.0

1. i=i+1

2. Calculate (i— 1)1-h approximation accelerations, velocities and displacement
v Yot i . ..
{5t} =a.{as) A gt} - as{ST
{9‘{}:“ =A, {dm}i_l —-A, {Ef{}l.._ AS{E')‘{}(
{oi,, = {a} ™ + (%},

L+dt
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Calculate (i—l)[h effective out-of-balance loads

(" (e, -} [} {RYL,

t+dt t+dt t4clt
~ -1

Calculate (i—l)lh stiffness matrix [K .

Solve for i™ correction to displacement increments :
i~1 i i-1
[K]l {69‘{} - {F}!+dl
Calculate new displacement increments :

[AR} = {a%}™" + {9}

Ineration convergence if,

ooy Jiont, +{o5t¥] < o

tdt

if convergence then {aR} = {Agi}i and go to V ; if no convergence go to 1;

otherwise restart using a smaller time step size.

Calculate new accelerations, velocities and displacements:

(5 = acfom}-af5) -, (5]
(o = e )+ 2,0
{o}* = {}+{aR}.

51
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APPENDIX III

COMPUTER_PROGRAM

INTEGER N,LK,IPVT(10),[PVTMT,NLESSI,IPLUS1,K2,K3,KCOL,JCOL
INTEGER JROW TMPVT,MM,T,NLE2,IP(10), TMP,IPL2,IPV,DK,K1,11,12,J2
INTEGER 13,J3,14,K4,AB,W,TF,IVT(10),NESS1,ILUS,IVTMT,NOF,NDIM
INTEGER TPVT,

REAL  H,F0(10,10),PLLMT(10,10),AC(10,10),F6(10,10),C,V,AT(10,10)
REAL  BEKL(10,10),MA(10,10),KA(10,10),A0,A1,A2,A3,A4,A5,A6,A7
REAL  A8.A9,A10,RA(10),DX,M3,WN,WN1,WN2,M4,M2,M6,DT,EL
REAL  TR(10),TE(10),SM(10,10),SC(10,10),SK(10,10),F1(10,10)

REAL  F2(10,10),SUMI,SUM2,XC,F(10),TR1(10),DIS2(10),SUM6(10,10)
REAL  DIS(10),VEL(10),ACC(10),F4(10),M1,DET,SUM,M8(10,10),SAVE
REAL  RATIO,VALUE,X(10),L1,WR1(10),TA(10,10),Y1(10),DIS1(10)
REAL  VELI(10),ACC1(10), TOT1,CA(10,10),F3(10,10), WR(10),F5(10)
REAL  MO9(10),M7(10),F52(10,10),SVE,DKK,D,DISL(10),VELL(10)
REAL  ACCL(10),KG(10,10),F50(10,10),DET1,X1(10),SUM3,DISL1(10)
REAL  SUM7(10,10),F7(10,10),WRS5(10), WR6(10),AES(10),AR5(10),
REAL  ACCLI(10),SUM10(10),VELL1(10),DISL2(10),Y2(10),Y3(10)
REAL  SUM20(10,10),R(10),SUM11(10),SUM12(10,10),SUMI13(10,10)
REAL  SUM21(10,10),F10,F11(10),F12,F13,F14,F15F16(10,10),F17
REAL  SUM22(10,10),F18(10),F19,F20,F21,F22,F23(10,10),F25(10),F24
REAL  SUM99(10,10),F26,F27,F28,F29,530(10,10),F31,F51(10,10),EF
REAL  AMI,IM,F40,F41,F42 MV,QS,GRV,SUMS5(10,10),ELF,CS,SR1
REAL  SUMI00,SUM200,SUM300,DIS4(10),SR,DI(10),SU,SU1,NIT(10)
REAL  NIT1(10),NIT2(10),NIT3(10),DIS3(10),SZ,AVE,ACC2(10),DET5
REAL  VEL2(10),DIS5(10),SUMM,XX(10),F59(10,10),MU,MS,KS,KP
WRITE(*,*)' ENTER STARTING POINT OF THE BEAM A (M)’
READ(*,*) A

WRITE(*,*) ENTER FINAL POINT OF THE BEAM B M)

READ (*,*) B

WRITE (*,*)ENTER NO. OF MODES N '
READ (*,*)N

WRITE (*,*) ENTER YOUNG'S MODULUS . E N/M®
READ(*,673) B

WRITE(*,*YENTER MASS PER UNIT VOLUME ROH  KG/M*
READ(*,673) ROH

WRITE(*,*)ENTER THICKNESS OF THE BEAM TH M)
READ (*,*) TH :
WRITE(*,*)ENTER WIDTH OF THE BEAM Wl (M)
READ (*,*) WI
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WRITE (*,*)ENTER MOMENT OIF INERTIA OF AREA MO M"
READ(**) MO

WRITE(* *YENTER SPRING MASS OF THE MOVING LOAD MS KG
READ(*,673), MS

WRITE(*,*)ENTER UNSPRING MASS OF THE MOV.LOAD MU KG'
READ(*,*) MU

WRITE(*,*YENTER SPRING CONSTANT KS NM
READ(*,673) KS

WRITE(*,*)' ENTER SPRING CONSTANT ~ KP  NM'

READ(*,*) KP

WRITE(*,*YENTER VELOCITY OF THE VEHICLE ~V  M/SEC '
READ (**) V

WRITE(*,*YENTER DAMPING COEFF. OF THE VEHICLE CS KG/S'
READ(*,673) CS

FORMAT(E10.15)

L=B-A

ELF=1.0

C=0.0

PI=22./7.

G=9.80665

AR=TH*WI

MOO=MO/(L**4)

VE=(SQRT(ROH/E))*V

ROF=(SQRT(MO/AR))/L

GRV=ROH*L*G/E

MV=(MS+MUYROH*(L**3)

FTT=1.0/VE

FT=FTT+200

M3=MU/(MU+MS)

M6=MV*GRV

WN=SQRT((KS*(L**2)*ROH)/(E*(MU+MS)))
WN1=SQRT((KP*(L**2)*ROH)/(E*(MS+MU)))
WN2=CS/(2.0+SQRT(KS*(MU+MS)))

NDIM=10

NOF=N+2

DT=2.

EL=.5

BE=.25

© AO=1./(BE*(DT**2))

AI1=EL/(BE*DT)
A2=1./(BE*DT)
A3=(1./2.*BE))-1.
A4=(EL/BE)-1
AS5=(DT/2.)*((EL/BE)-2.)
A9=DT*(1.-EL)
A10=EL*DT

COMPUTING THE TRANSVERSE MASS MATRIX [MT]
AXIAL STIFFNESS MATRIX [KA]
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549

500

501

502

504

54

LINEAR STIFFNESS MATRIX KL]

DO 549 I=1,N

DO 549 J=1,N

F2(1,5)=0.0

F52(1,1)=0.0

F6(I,1=0.0

CONTINUE

DO 1 K1=A,B

DO 2 I2=1,N

DO 2 J2=1N
SUMS(12,J2)=SIN((I2*P1*K 1 )/L)*SIN((J2*PI*K 1)/L)
SUMS(12,12)=SUMS5(12,J2)* (-ELF* ABS((K 1/L)-.5)+1.)
SUM6(I2,12)=(12 *PI**2)*SIN(IZ*PI*K 1/L)* (J2*PI**2)* SINJ2*PI*K 1/L)
SUM6(I2,12)=SUMG6(12,J2)*((ROG)**2)*(-ELF* ABS((K1/L)-.5)+1.)
SUM7(12,J2)=(I2*P)*COS(I2*PI*K 1/L)* (J2* PI)*COS(J2*PTI*K 1/L)
SUM7(12,J2)=SUM7(12,J2)*(-ELF*ABS((K1/L)-.5)+1.)
CONTINUE

F(K1.EQ.A) THEN

DO 500 I=1,N

DO 500 J=1,N

FO(LT)=SUMS5(1,J)

F50(L))=SUM6(I,T)

F3(L)=SUM7(L))

CONTINUE

ENDIF

IF(K1.EQ.B) THEN

DO 501 I=1,N

DO 501 J=1,N

F1(I,J)=SUMS5(LJ)

FS1(L,1)=SUM6(LJ)

F7(1))=SUM7(1J)

CONTINUE

ENDIF

IF(K1.GT.A.AND K1LT.B) THEN

DO 502 I=1,N

DO 502 J=1,N

F2(L,1)=F2(L $)+SUMS5(LJ)

" F52(1L,1)=F52(L1)+SUMG6(LJ)

F6(1,))=F6(,T1)+SUM7(1J)

CONTINUE

ENDIF

CONTINUE

DO 504 I=1,N

DO 504 J=1,N
MT(1,1)=(DX/2.)*(FO(LN+F1(LI)+2.*F2(L]))
KIL(LJ)=(DX/2.)*F50(I,H+E51(LN)+2.¥F52(LD)
KA(LN=(DX/2.y*(F3(LN+F7(L1)+2.*F6(L,1))
CONTINUE
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89

22

19

956

AXIAL MASS MATRIX  [MA]

DO 105 I=1,N

DO 105 J=1,N

MAD)=MT(LI)

CA(D=0.0

AC(L)=C*MT(1,J)

CONTINUE

DO 89 I-1,N

DO 89 J=1,N
TAD=KALI)+AOMAN+A1*CA(LI)
CONTINUE

DO 7 T=0,INT(FT),2

IE(T.EQ.0.0) THEN

DO 22 [=1,N+2

DIS(1)=0.0

VEL(1)=0.0

ACC(1)=0.0

DISL(1)=0.0

VELL(I)=0.0

ACCL(D)=0.0

CONTINUE

ENDIF

COMPUTING THE GEOMETRIC STIFFNESS MATRIX [KG]
DO 191=1,N

DO 19 I=1,N

SUM?22(1,1)=0.0

CONTINUE

DO 8 K1=A,B,1

F10=0.0

DO 9 K=1,N
F10=F10+DIS(K)*((K*PD*COS(K*PI*K1/L))
DO 10 11=1,N

F11(11)=F10*(J 1#PI)*COS(J1*PI*K1/L)
F12=0.0

DO 15 K2=1,N
F12=F12+F11(K2)+DIS(K2)
F13=.5*F12

F14=0.0

DO 16 K3=1,N
F14=F14+((K3*P1)*COS(K3*PI*K1/L)*DIS1(K3)
F15=F14+F13

DO 956 I=1,N

DO 956 J=1,N

F16(1,1)=0.0

CONTINUE

DO 17 I=1.N

DO 17 J=1,N

F16(I,J)=F16(I,I)+(I*PI)*COS(I*PI*Kl/L)*(J*PI)*COS(J*PI*KI&)

F16(11)=F16(1,1)*(-ELF*ABS((K1/L)-.5)+1.)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



7

16
15
10

11

12

i3

767
14

30

32

33

F16(1.1)=F16(11)*F15

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

IF(K!.EQ.A) THEN

DO 111=1,N

DO 11J=1,N

SUM20(LN)=F16(1,})

CONTINUE

ENDIF

IF(K1.EQ.B) THEN

DO 121=I,N

DO 12 J=1,N

SUM21(L,1)=F16(1))

CONTINUE

ENDIF
IF(K1.GT.A.AND.K1.LT.B) THEN
DO 131=1,N

DO 13J=I,N
SUM22(L,))=SUM22(I,))+F16(1,J)
CONTINUE

ENDIF

CONTINUE

DO 767 I=1.N

DO 767 J=1,N
KG(1L)=(DX/2.)*(SUM20(I,1)+SUM21 (I))}+2.*SUM22(LJ))
CONTINUE

FORMAT(5(E15.3))

FORMING THE COUPLED EQUATION
DO 30 I=1,N+2

DO 30 J=1,N+2

SM(1,1)=0.0

SC(1,1)=0.0

SK(1,1)=0.0

CONTINUE

IF(T.GR.FTT) THEN

MV=0.0

ENDIF

DO 321=1,N

DO 32 J=N+1,N+1
SM(I,J)=MV*M3*SIN(I*PI* VE*T)
CONTINUE

DO 33 I=1,N

DO 33 J=N+2,N+2
SM(I,))=MV*(1-M3)*SIN(I*PI* VE*T)
CONTINUE

SM(N+1,N+1)=M3

56
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43

45

46

47

48

SM(N+1,N+2)=(1-M3)

SM(N+2N+2)=1-M3
SC(N+2,N+1)=-(2.*WN2*WN))
SC(N+2 N+2)=+(2.*(WN2*WN))
SK(N+1,N+1)=WN1*+2
SK(N+2,N+1)=-(WN**2)
SK(N+2,N+2)=WN**2

DO 34 I=N+1,N+1

DO 34 J=1,N
SK(LJ)=-(WN1**2)*(SIN(J*PI*VE*T))
CONTINUE

DO 35 I=I,N

DO 35 J=1,N

SM(LJ)=MT(J)

SC(,1)=AC(L))

SK(LJ)=KL(L]J)

CONTINUE

COMPUTING THE TOTAL MATRIX [AT]
DO 41 I=1,N+2

DO 41 J=1,N+2
ATN=SK(I+A0*SM(I,T)+A 1 *SC(IL,J)
CONTINUE

COMPUTING THE TOTAL FORCE
DO 43 I=1,N+2

F4(D)=0.0

CONTINUE

IF(T.GT.FIT) THEN

M6=0.0

ENDIF

DO 44 I=1,N
F(1)=M6*SIN(I*PI*VEX(T+DT))
CONTINUE

DO 45 I=1,N

F4(1)=F()

CONTINUE

DO 46 I=1,N+2
TR()=A2*VEL(D)+A3*ACC(I)
TE(D)=A4*VEL(D+A5*ACC()
CONTINUE

DO I=1,N+2

WR(D)=0.0

DO 47 K=1,N+2
WR(D=WR(D+SM(L,K)*TR(K)
CONTINUE

DO 48 [=N+2

WRI()=0.0

DO 48 K=1,N+2

WR1(D=WR 1()+SC(LK)*TE(K)
CONTINUE
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51

53

820

822

821

52

54

55

SR

DO 107 I=1,N+2

R(1)=0.0

DO 107 K=1,N+2
R(D)=R(D+SK(L,K)*DIS(K)
CONTINUE

DO 49 I=1,N+2
TRI(D=F4(D+WR(D+WR1()-R(D)
CONTINUE

THIS PART SOLVES THE EQUATION BY GAUSSIAN ELIMINATION
WITH PARTIAL PIVOTING AND BACK SUBSTITUTION
DET=1.0

NLESS1=NOF-1.

DO 51 I=1,NOF

IPVT(D)=I

CONTINUE

DO 52 I=1,NLESSI

IPLUS1=I+1

IPVTMT=I

DO 53 J=IPLUSU1,NOF
IF(ABS(AT(IPVTMT,1)).LT.ABS(AT(J,1))) IPVTMT=]
CONTINUE

IF(IPVTMT.NE.I0 THEN
TMPVT=IPVT(l)
IPVT()=IPVT(IPVTMT)

DO 820 JCOL=I,NOF
SAVE=AT(I,JCOL)
AT(IL,JCOL)=AT(IPVTMT,JCOL)
AT(IPVTMT,JCOL)=SAVE
CONTINUE
IPVT(IPVTMT)=TMPVT
DET=-DET

ENDIF

DO 821 JROW=IPLUS1,NOF
IF(AT(JROW,I).NE.0.0) THEN
AT(JROW,D=AT(ROW,IVAT(L]I)
DO 822 KCOL=IPLUS1,NOF
AT(JROW,KCOL)=AT(JROW,KCOL)-AT(GROW,D*AT(LKCOL)
CONTINUE

ENDIF

CONTINUE

CONTINUE

DO 54 I=1,NOF
DET=DET*AT(LD)

CONTINUE

DO 55 I=1,NOF

XM=TR1(IPVT (1))

CONTINUE

DO 56 IROW=2,NOF
SUM=X(IROW)
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56

59

58
846

800

801

802

803

805

333

DO 57 JCOL=1,(IROW-1)

SUM=SUM-AT(IROW.JCOLY*X(JCOL)
CONTINUE

X(IROW)=SUM

CONTINUE
DISI(INOF)=X(NOF)/AT(NOF,NOF)
DO 58 IROW=(NOF-1)1,-1
SUM=X(IROW

DO 59 JCOL=(IROW+1),NOF
SUM=SUM-AT(IROW,JCOLY*DIS1(JCOL}
CONTINUE
DIS1(IROW)=SUM/AT(IROW,IROW)
CONTINUE

DO 800 I=1,N+2
ACC1(D=A0*DIS1(i)-A2*VEL(i)-A3*ACC(i)
VELI1(i)=A1*DIS1(i)-A4*VEL(i)-A5*ACC(i)
DIS2(i)=DIS1(i)+DIS(i)

CONTINUE

DO 801 I=1,N+2

NIT(1)=0.0

NITI1(1)=0.0

NIT2(1)=0.0

DO 801 K=1,N+2
NIT(@)=NIT(i)+SM(i,k)*ACCI1(k)
NIT1(i)=NIT1(i)+SC(i,k)*VEL1(k)
NIT2())=NIT2(i}+SK(i,k)*DIS2(k)
CONTINUE

DO 802 I=1,N+2
NIT3(i)=F4@1)-NIT(i)-NIT1(1)-NIT2(i)
CONTINUE

DET5=1.0

NESS1=NOF-1

DO 803 I=1,NOF

IVT(i)=I

CONTINUE

DO 804 I=1,NESS1

ILUS=I+1

IVIMT=]

DO 805 J=ILUS1,NOF
IF(ABS(AT(IVTMT,I)).LT.ABS(AT(J,I))) IVIMT=]
CONTINUE

IFOVTMT.NE.I) THEN

TPVT=IVT(i)

IVITQ)=IVT(AVTMT)

DO 333 JCOL=1,NOF
SVE=AT(I,JCOL)

AT, JCOL)=AT(IVIMT,J COL)
AT(IVTMT,JCOL)=SVE

CONTINUE

59
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334

804

806

807

809

808

811

810

340

841

842

843

IVTIVIMT)=TPVT

DET5=-DET5

ENDIF

DO 334 JROW=ILUS1,NOF
IF(AT(JROW,I).NE.0.0) THEN
ATUROW,D=AT(JROW,I)/AT(LI)
DO 335 KCOL=ILUS1,NOF

AT(JROW,KCOL)=AT(JROW,KCOL)-AT(J ROW,D*AT(I,KCOL)

CONTINUE

ENDIF

CONTINUE

CONTINUE

DO 806 I=1,NOF
DET5=DET5*AT(LI)
CONTINUE

DO 807 I=1,NOF
XX(i)=NIT3(IVT())
CONTINUE

DO 808 IROW=2, NOF
SUMM=XX(i)

DO 809 JCOL=1,(IROW-1)
SUMM=SUMM-AT(IROW,JCOL)*XX(JCOL)
CONTINUE
XX(IROW)=SUMM
CONTINUE
DIS3(NOF)=XX(NOF)/AT(NOF,NOF)
DO 810 IROW=(NOF-1),1,-1
SUMM=XX(IROW)

DO 811 JCOL=(IROW+1),NOF
SUMM=SUMM-AT(IROW,JCOL)*DIS(JCOL)
CONTINUE
DIS3(IROW)=SUMM/AT(IROW,IROW)
CONTINUE

DO 840 I=1,N+2
DIS4(i)=DIS()+DIS3(i)
CONTINUE

SR=0.0

DO 841 K=1,N+2
SR=SR+DIS3(k)*DIS3(k)
CONTINUE

SR1=SQRT(SR)

DO 842 I=1,N+2
DIG)=DIS2(i)+DIS3(i)
CONTINUE

SU=0.0

DO 843 K=1,N+2
SU=SU+DI(k}*DI(k)
CONTINUE

SU1=SQRT(SU)

60
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844
845

888

62

773

883

885

607
606
605
884
64

601

SZ=SR1/SUI

IF(SZ.GT..001) GOTO 844

[F(SZ.LT..001) GOTO 838

DO 845 [=1,N+2

DIS1(i)=DIS4(i)

GOTO 846

DO 62 I=1,N+2
ACC2(i)=A0*DIS4(i)-A2*VEL(i)-A3* ACC(i)
VEL2())=VEL(i)+A9* ACC(i)+A10*ACC2(i)
DIS5(i)=DIS(i)+DIS4(i)

CONTINUE

DO 773 I=1,N

Y3(i)=0.0

CONTINUE

DO 600 K1=A,B

DO 64 1=1,N

DO 64 J=1,N

SUM10()=(I*PI)*COS(I*PI*K I/L)*(-ELF*ABS((K1/L)-.5)}+1)
DO 883 [1=1,N

DO 883 J1=1,N

SUM99(I1,J1)=0.0

CONTINUE

DO 884 1i=1,N

DO 884 J1=1,N
SUMO99(I1,J1)=SUM99(11,J1)+SUMI10(I1)*DIS5(J1)
DO 605 12=1,N

SUMI11(12)=0.0

DO 605 K=1,N
SUM11(12)=SUMI11(12)+SUM99(12,K)*((K,P)) *COS(K*PI*K1/L))
DO 885 I3=1,N

DO 885 J3=I,N

SUMI12(13,13)=0.0

CONTINUE

DO 606 13=1,N

DO 606 J3=1,N
SUM12(I3,J3)=SUM12(13,13)+SUM1 1(I3)*((J3*P1)*COS(J3*PI*K 1/L))
DO 607 [4=1,N

SUM13(14)=0.0

DO 607 K4=1,N
SUMI13(14)=SUM13(14)+SUM12(14,K4)*DIS5(K4)
CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

IF(K1.EQ.A) THEN

DO 601 I=1,N

Y1(i)=SUM13(i)

CONTINUE
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603

600

608

84

85

86

108

g7

91

93

ENDIF

IF(K1.EQ.B) THEN
DO 602 I=1,N
Y2(i)=SUM13(i)
CONTINUE

ENDIF
IF(K1.GT.A.AND.K1.LT.B) THEN
DO 603 I=1,N
Y3)=Y3@@)+SUMI3(1)
CONTINUE

ENDIF

CONTINUE

DO 608 I=1,N

MO3i)=-(.5*DX/2 )y (Y1(i)+Y2(1)+2.*Y3(1))

CONTINUE

DO 84 I=1,N
ARS(i)=A2*VELL()+A3*ACCL(})
AE5(i)=A4*VELL(i)+A5* ACCL(i)
CONTINUE

DO 85 I=1,N

WRS5(1)=0.0

DO 85 K=1,N
WRS5(1)=WRS5(i)+MA(LK)*AR5(K)
CONTINUE

DO 86 I=1,N

WR6(1)=0.0

DO 86 K=1,N
WR6(i)=WR6(i)+CA(LK)*AE5 (k)
CONTINUE

DO 108 I=1,N
RA()=0.0
DO 108 K=1,N

RA()=RA({)+KA(LK)*DISL(K)
CONTINUE

DO 87 I=1,N
M7(1)=M9(i)+WR5(i)+WR6(i)-RAG)
CONTINUE

DET1=1.0

NLE2=N-1

DO 91 I=1,N

1P(i)=1

CONTINUE

DO 92 I=1,NLE2

IPL2=1+1

IPV=]

DO 93 J=IPL2,N .

IF(ABS(TA(JIPV,I)).LT.ABS(TA(L))) 1PV=]

CONTINUE
IF(IPV.NE.I) THEN
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890

892

891

92

94

95

97

96

99

98

100

102

TMP=IP(i)

1Pa)=1P(IPV)

DO 890 JCOL=1,N
AVE=TA(LJCOL)
TA(IJCOL)=TA(IPV,JCOL)
TA(PV,JCOL)=AVE

CONTINUE

IP(IPV)=TMP

DET1=-DET]I

ENDIF

DO 891 JROW=IPL2,N
IF(TA(JROW,I).NE.0.0) THEN
TAGROW,D=TA(JROW,I)/TA(LI)
DO 892 KCOL=IPL2,N
TA(JROW,KCOL)=TA(JROW,KCOL)-TAJROW,* TA(LKCOL)
CONTINUE

ENDIF

CONTINUE

CONTINUE

DO 94 I=1,N
DETI1=DET1*TA(L))

CONTINUE

DO 95 1=1,N

X1()=M7(IP(i))

CONTINUE

DO 96 IROW=2,N
SUM3=X1(JROW)

DO 97 JCOL =1,(IROW-1)
SUM3=SUM3-TA(IROW,JCOL)*X1(JCOL)
CONTINUE

X1(JROW)=SUM3

CONTINUE
DISL1(N)=X1(N)YTA(N,N)

DO 98 IROW=(N-1),1,-1
SUM3=X1(IROW)

DO 99 JCOL =(IROW+1),N
SUM3=SUM3-TA(IROW,JCOL)*DISL1(JCOL)

CONTINUE
DISL1(IROW)=SUM3/TA(IROW,IROW)
CONTINUE

3
DO 100 I1=1,N 442321

ACCL1()=A0*DISL1(i)-A2*VELL(i)-A3*ACCL(i)
VELL1())=VELL(i)+A9*ACCL(i)}+A10*ACCLI1(i)
DISL2(i)=DISL()+DISL1(i)

CONTINUE

XC=0.0

DO 102 K=1,N

XC=XC+DIS(K)*SIN(K*PI*.5)

WRITE(*,109) T,XC
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109

103

540

FORMAT(," 14/

DO 103 I=1 N+2
DIS(i)=DIS5(1)
VEL(@i)=VEL2(i)
ACC(i)=ACC2(i)
CONTINUE

DO 540 I=1,N
DISL(i)=DISL2(i)
VELL(i)=VELL1(i)
ACCL(1)=ACCLI1(i)
CONTINUE
CONTINUE

- STOP

END

' E15.3)
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